
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 286 (2005) 229–250
0022-460X/$ -

doi:10.1016/j.

�Correspon

E-mail add
www.elsevier.com/locate/jsvi
An outlier analysis framework for impedance-based structural
health monitoring

Gyuhae Park�, Amanda C. Rutherford, Hoon Sohn, Charles R. Farrar

Engineering Sciences & Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 25 August 2003; received in revised form 24 September 2004; accepted 2 October 2004

Available online 29 December 2004
Abstract

This paper presents the use of statistically rigorous algorithms combined with active-sensing impedance
methods for damage identification in engineering systems. In particular, we propose to use statistical
pattern recognition methods to address damage classification and data mining issues associated with the
examination of large numbers of impedance signals for health monitoring applications.

In this paper, in order to diagnose damage with statistical confidence, the impedance-based monitoring is
cast in the context of an outlier detection framework. A modified auto-regressive model with exogenous
inputs (ARX) in the frequency domain is developed and the damage-sensitive feature is obtained by
quantifying the differences between the measured impedance and the output of the ARX model.
Furthermore, because of the non-Gaussian nature of the feature distribution tails, extreme value statistics is
employed to develop a robust damage classifier. This paper concludes with a numerical example on a 5
degree-of-freedom system and an experimental investigation on a multi-story building model to
demonstrate the performance of the proposed concept.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Damage identification is an area of interest in many engineering industries and is the
most fundamental part of structural health monitoring and damage prognosis problems.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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The process of implementing a damage detection strategy can be best addressed as a problem in
statistical pattern recognition [1]. In this context, the damage detection and structural
health monitoring can be broken down into four categories: (1) operational evaluation,
(2) data acquisition and cleansing, (3) feature extraction and data compression, and
(4) statistical model development. A general overview of this statistical pattern
recognition technology can be found in Ref. [2]. The focus of this paper is to address
the issues associated with categories (3) and (4) coupled with the use of the impedance-
based structural health monitoring techniques. In the process of the feature extraction,
data measured from the system or structure are converted into a key information that
can be used to identify whether damage has occurred or not in a structure. This information is
referred to as a damage-sensitive feature. The feature extraction usually involves the condensation
of a large amount of available data into a much smaller data set that can be analyzed in a
statistical manner.

Impedance-based structural health monitoring has shown promising successes in monitoring
and finding minor changes in structural integrity [3,4]. The basic concept of the method is
to use high-frequency structural excitations to monitor the local area of a structure for
changes in structural impedance that would indicate imminent damage. By employing
high-frequency ranges (430 kHz), the method is very sensitive to incipient changes in
structural integrity. Another key aspect of the impedance method is the use of piezoelectric
(PZT) materials as a collocated sensors and actuators. The use of collocated, self-sensing
actuators provides a solution to the common structural health monitoring problem of ‘‘how to
excite a structure’’ and considerably reduces hardware complexity and power requirement.
Furthermore, the small, non-intrusive PZT can be easily installed into and used to monitor
remote, inaccessible locations.

In order for the impedance method to mature from laboratory demonstration problems
to field implementation on complex structures, statistically rigorous algorithms need to be
employed to assess the variation of the signature patterns caused by structural damage.
However, the signal processing part of the impedance method is probably the least explored
area to date. Impedance-based health monitoring is still heavily based on variation of
impedance response. Damage metric charts (described in the next section) are used only when
a qualitative comparison between data sets needs to be made. Because the impedance-based
method primarily relies on experimental data with difficulties in modeling at such high-frequency
ranges, the use of statistical analysis procedures is required if changes in the impedance caused by
structural damage are to be distinguished from those caused by operational and environmental
variability.

In this paper, the impedance-based monitoring is cast in the context of an outlier detection
framework. A modified auto-regressive model with exogenous inputs (ARX) in the frequency
domain is developed. The damage-sensitive feature is then computed by differentiating the
measured impedance and the output of the ARX model. Because of the non-Gaussian nature of
the extracted features, extreme value statistics (EVS) is employed to develop a robust damage
classifier.

In the following sections, the theoretical explanation of the techniques is presented and then,
the theory is tested on a numerical example of a 5 degree-of-freedom (dof) system and an
experimental model of a three-story steel frame building.
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2. Impedance-based structural health monitoring

The impedance-based health monitoring method utilizes the direct as well as the converse PZT
effect simultaneously. Hence, one PZT patch can be used for both actuation and sensing of the
structural response. The PZT is normally bonded directly to the surface of the structure. The force
transmission between the bonded PZT and the structure can be modified by the bond layer,
therefore, the use of high-strength adhesives is required to ensure a better mechanical interaction.
By analyzing the interaction of the PZT with the host structure, it has been shown that the
electrical impedance of PZT is directly related to the mechanical point impedance of the external
structure, as shown in the following equation [5]:

Y ðoÞ ¼
I

V
¼ ioa �̄T33 �

ZðoÞ
ZðoÞ þ ZaðoÞ

d2
3xŶ

E

xx

� �
; (1)

where Y is the electrical admittance (inverse of impedance) of the PZT, Za and Z are the
mechanical impedances of the PZT material and structure, respectively, V is the input voltage to
the PZT actuator, and I is the output current from the PZT, a; d3x; Y E

xx; �̄T33 are the geometry
constant, piezoelectric coupling constant, complex Young’s modulus, and dielectric constant of
the PZT at zero stress, respectively.

Eq. (1) sets the groundwork for using PZTs for impedance-based structural health monitoring
applications. Assuming that the intrinsic properties of the PZT do not change over the monitoring
period of the host structure, Eq. (1) clearly shows that the electrical impedance of the PZT is
directly related to the mechanical impedance of the host structure. This relationship between
electrical and mechanical impedances allows the monitoring of the host structure’s mechanical
properties using the measured electrical impedance. Consequently, any changes in the electrical
impedance signature can be considered as changes in the structural integrity. In order to ensure
high sensitivity to incipient damage, the electrical impedance is measured at high-frequency
ranges. To sense incipient-type damage which does not result in any measurable change
in the structure’s global stiffness properties, it is necessary for the wavelength of excitation
to be smaller than the characteristic length of the damage to be detected [6]. Hence, the
frequency range typically used in this technique is in the range of 20–250 kHz. At such high
frequencies, the wavelength of the excitation is small and is sensitive enough to detect minor
changes in the structural integrity. In addition, by using the self-sensing actuation concept and
local excitations, the impedance method requires very low voltage (less than 1V) compared to
those of using separate sensors/actuators. This low-voltage level is much more in line with micro-
level actuators than the voltages and excitation forces required by competing modal-based
diagnostic methods.

An experimental modal test using the electrical impedance of PZT patches (as co-located
actuators and sensors) was also investigated by Sun et al. [7]. In this paper, the authors discuss
that both the point frequency response functions (FRF) of a single location and the transfer FRF
between two locations on a structure can be obtained by measured electrical impedance. This
work provides a critical insight into impedance-based structural health monitoring technique,
showing that the electrical impedance of a PZT, which can be analogous to FRF, constitutes a
unique signature of the dynamic behavior of the structure.
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Experimental implementation of the impedance method has been successfully demonstrated on
several complex structures. A more complete description of the technique and recent trends in
experimental investigations are summarized in Refs. [3,4].

Quantitative damage assessment with the impedance method is traditionally accomplished
through the use of a scalar damage metric. In earlier work [8], a simple statistical algorithm, which
is based on frequency-by-frequency comparison and referred to as ‘root mean square deviation’
(RMSD) has been used,

M ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ReðZi;1Þ �ReðZi;2Þ�

2

½ReðZi;1Þ�
2

s
; (2)

where M represents the damage metric, Zi,1 is the impedance of the PZT measured at healthy
conditions, and Zi,2 is the impedance for the comparison with the baseline measurement at
frequency interval i. In a RMSD damage metric chart, the greater numerical value of the metric,
the larger the difference between the baseline and the impedance measurement, indicating the
presence of damage in a structure. Raju et al. [9] adopt another scalar damage metric, referred to
as the ‘Cross-Correlation’ metric, which can be used to interpret and quantify information from
different data sets. The correlation coefficient between two data sets determines the relationship
between two impedance signatures, and provides a qualitative metric chart. In most cases, the
results with the correlation metric are consistent with those of RMSD, in which the metric values
increase when there is an increase in severity of damage. Zagrai and Giurgiutiu [10] investigate
several statistics-based damage metrics, including rmsd, mean absolute percentage deviation,
covariance change, and correlation coefficient deviation. It has been found that the third power of
the correlation coefficient deviation, ð1� R2Þ

3; is the most successful damage indicator, which
tends to linearly decrease as the crack in a thin plate moves away from the sensor. However, the
main limitation of the use of these damage metrics is how to set appropriate decision limits or
thresholds values, forming a motivation of this study.
3. Damage diagnosis by statistical process control and EVS

In order to assess damage with statistical confidence and to address the data mining involved in
examining large numbers of impedance signals, we investigate the use of statistical process control
[11] in an unsupervised learning mode, which is the first step of damage identification. In
particular, the statistical process control paradigm developed for vibration measurements by Sohn
and Farrar [1] has been extended and applied to the impedance-based methodology.

The developed statistical process control consists of a two-stage prediction model,
that is a combination of an auto-regressive (AR) model and AR model with exogenous
inputs (ARX). In a traditional time-series application, an AR–ARX model attempts to predict the
response at the current time point based on its own past time point responses, as well as the
current and past inputs to the system [12]. Residual errors, which quantify the difference
between the prediction from the AR–ARX model and the actual measured time history
at each time interval, are then computed and used as a damage-sensitive feature [1,13,14].
First, each AR models is constructed with the measured time histories from both undamaged and
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‘‘in-question’’ condition as in Eq. (3),

xðtÞ ¼
Xp

j¼1

fjxðt � jÞ þ exðtÞ; (3)

where xðtÞ donates a known time signal, p is an order of the AR model, fj is a AR coefficient, and
exðtÞ is the difference between the measurement and the prediction obtained by the AR model. It is
assumed that this difference is mainly caused by the unknown external input. Based on this
assumption, a reference ARX model of the known healthy signal is constructed with the output
and the difference estimated from the undamaged AR model:

xðtÞ ¼
Xa

i¼1

ajxðt � iÞ þ
Xb

j¼1

bjexðt � jÞ þ �xðtÞ; (4)

where �xðtÞ denotes the residual error between the measured signal and the output of the ARX
model. Finally, a new signal is fed into the reference ARX model (with the output and residual
error from the ‘‘in-question’’ AR model as inputs), and the damage-sensitive feature is obtained
from the residual error. If the system experiences damage that alters the dynamic response, the
reference ARX model is not able to adequately reproduce the new signal, resulting in significant
variations in �xðtÞ: This variation will be indicated by an unusual number of residual error terms
exceeding predetermined limits (called control limits). Data points outside of the limits are
referred to as outliers. A statistically significant number of outliers indicates a system anomaly.
Furthermore, the procedure used in the AR–ARX model forces the residual error, �xðtÞ; to be
nearly uncorrelated with no systematic pattern, if the fitted AR–ARX model is approximately
correct [15], while the time signals (e.g. acceleration) are usually autocorrelated. The above brief
discussion represents a primitive application of statistical pattern recognition to vibration signals
that has led to documented success in the literature [1,13,14].

The features that are analyzed in the impedance methods are mainly drawn from the frequency
domain. A frequency domain ARX model attempts to predict the output at a particular frequency
based on the input at that frequency, as well as outputs at surrounding frequencies. The outputs at
the surrounding frequencies are included as inputs to account for subharmonics and
superharmonics introduced to the system through nonlinear feedback. A first-order ARX model,
among many possible forms of the frequency domain, is [16]

YðoÞ
UðoÞ

ffi BðoÞ þ A1ðoÞ
Yðo� DoÞ
UðoÞ

þ A�1ðoÞ
Yðoþ DoÞ
UðoÞ

; (5)

where Y(o) is the response at frequency o, U(o) is the input, and Yðo� DoÞ and Yðoþ DoÞ are
the responses at frequencies o� Do and oþ Do; respectively. A1(o) and A�1(o) are the
frequency domain AR coefficients, and B(o) is the exogenous coefficient. These terms are then
determined by minimizing the sum of the squared error associated with how well the model in
Eq. (5) describes the measured data. If the nonlinear terms (A1(o), A�1(o)) are set to zero, the
exogenous coefficient becomes equivalent to the conventional frequency response functions.
More details on frequency domain analysis of data using an ARX input model can be found in
Refs. [17,18].
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To date, impedance-based methods have focused on using the real part of the induced electrical
impedance for monitoring structures. Considering the capacitive nature of the PZT, which shows
the strong temperature sensitivity and manifests in the imaginary part of the impedance, only the
real part is used to monitor the condition of a structure because it is dominated by structural
responses. With traditional impedance analyzers, such as HP4194A, the measurement of the
nonlinear terms, Yðo� DoÞ=UðoÞ and Yðoþ DoÞ=UðoÞ; is not currently available, imposing
difficulties in using the frequency domain ARX model with the impedance methods. These
nonlinear terms must be measured in the time domain and an appropriate FFT procedure is
necessary. Therefore, we propose using a modified frequency domain ARX model by replacing
the nonlinear terms in Eq. (5) with curvatures of measured impedance data, defined as

YðoÞ
UðoÞ

¼ BðoÞ þ C1ðoÞ
q2

qo2

Yðo� DoÞ
Uðo� DoÞ

� �
þ C�1ðoÞ

q2

qo2

Yðoþ DoÞ
Uðoþ DoÞ

� �
: (6)

In Eq. (6), the curvature of impedance was obtained numerically by using a central difference
approximation,

q2

qo2

YðoÞ
UðoÞ

� �
¼

q2

qo2
ðZðoÞÞ ¼

Zðoþ DoÞ � 2ZðoÞ þ Zðo� DoÞ

ðDoÞ2
; (7)

where ZðoÞ is the measured impedance. It should be noted that this modified ARX model does
not explicitly consider the nonlinearity as originally proposed by Adams [16]. It does not indicate
strain, displacement, or velocity relationship either. Instead, by considering the coupling terms in
the curvatures before and after the frequency components, the proposed ARX model is an
attempt to force the correlation of the measured impedance with the adjacent frequencies up to
o	 2Do; which is fine enough to allow the extraction of the unique characteristics of measured
impedance data. The slope of the impedance data can also be used although the coupling terms
would be limited to o	 Do:

Once the coefficients of B(o), C1(o) and C�1(o) are obtained with the several baseline
impedance measurement in the least square sense, the model is then used to predict the response of
a newly measured signal. As in the time domain AR–ARX model, this prediction model should be
able to appropriately predict the new signal if the signal is close to the reference signal. On the
other hand, if the new signal is recorded under a structural condition different from the conditions
where reference signals were obtained, the ARX model would not reproduce the new signal
adequately. Thus, the residual error is adopted as a damage sensitive feature in this method, as in
the time domain analysis.

When analyzing the residual error, EVS has been employed [19,20]. The major problem in
statistical analysis is that the functional form of the distribution is often unknown and there are an
infinite number of candidate distributions. However, there are only three types of distributions for
the extreme (maximum or minimum) values regardless the distribution type of the parent data.
Because there are only three distributions (Gumbel, Weibull, and Frechet distribution) to choose
from, the distribution selection and parameter estimation becomes much easier. EVS is a powerful
tool if the data of interest are in the tails (extremes) of the damage sensitive feature distribution.
Control limits for the outlier analysis can be accurately established by employing EVS from the
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reference impedance signals measured from the health structure. For more information on EVS,
consult Refs. [19,20].

In summary, the proposed damage detection algorithm consists of impedance data acquisition,
construction of the frequency domain ARX model, establishment of the control limit coupled
with EVS, and the statistical discrimination between features from the undamaged and damaged
structures.
4. 5 dof system

A simulation example is presented to demonstrate the method presented above. The objective
of this simulation is to perform novelty detection based on the outlier analysis, which identifies the
existence of damage as a first step in structural health monitoring. With the impedance method,
the identification of damage locations (the second step in structural health monitoring) can be
easily accomplished by interrogating the PZT sensor/actuator individually employing high-
frequency ranges [4].

The system of interest is a simple 5 dof spring–mass–damper system that has been simulated in
MatLab, shown in Fig. 1. Mass, damping and spring coefficients have been held constant at 7 kg,
3N s/m, and 7000N/m, respectively. The system is subjected to a load at Mass 5, and the resulting
response is measured at the same location. This is consistent with the self-sensing concept of the
impedance sensors/actuators.

Changes in spring and damping coefficients of Mass 1 and Spring 1 constitute ‘‘damage’’ to the
system. Damping changes has been included in this analysis, otherwise only the shifts of resonant
frequency would be observed. Damage I refers to 10% reduction in the spring, and 10% increase in the
damping coefficient. Damage II refers 20% changes in both spring and damping in the same manner.

The real part of mechanical impedance was analyzed as shown in Fig. 2. The deduced
mechanical impedance, or mobility, is a point transfer function, hence its real part is always
positive, as illustrated in Fig. 2. To simulate a more realistic situation, a random noise (10%
noise-to-signal ratio) with a Gaussian normal distribution is added to each of the undamaged and
damaged response curves. With the added noise, a total of seven undamaged responses are taken.
Five of them are used to obtain the B(o), C1(o) and C�1(o) coefficients of the modified ARX
model in Eq. (6) and the remaining two are used for ‘‘false-positive’’ test.

Once the coefficients are obtained, the responses are reproduced using the ARX model. Fig. 3
shows the original and reproduced mechanical impedances after fitting the ARX model under the
undamaged condition. As shown in Fig. 3, the responses are very close, even with the significant
noise added. In the noise-free case, the original signal was much more closely reproduced with the
Fig. 1. Conceptual drawing of the 5 dof system.
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Fig. 2. Real part of mechanical impedance with Gaussian noise added: solid line, undamaged; dashed line, Damage I;

dotted line, Damage II.

Fig. 3. Original and regenerate signals after fitting the ARX model: solid line, original signal; dotted line, regenerated

signal.
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small errors only in the vicinity of resonant frequencies. Finally, the data from the damage
conditions are measured and analyzed using the identified ARX coefficients.

Once the damage-sensitive features were computed (in this case residual errors), EVS is used to
accurately model the behavior of the feature distribution’s tails. First, a moving window is taken
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along a vector of samples (measured data), and the maximum and minimum value is
independently selected from each of these windows. The induced cumulative density function
of these samples asymptotically converges to one of three possible distributions: Gumbel, Weibull,
or Frechet, as the number of vector samples tends to infinity. Out of three distributions, the
Frechet distribution shows an accepted fit of maxima as shown in Fig. 4. Thirty data points are
used to estimate the distribution of tails. A nonlinear optimization problem has to be solved to
estimate the distributions and associated parameters. The selection of extreme value distributions
and parameter estimation is beyond the scope of this paper, and is detailed in Ref. [19]. Once the
acceptable distribution parameters are identified, the confidence limits are then established to
assess the structural condition. These limits are far more accurate than those obtained when
assuming a Gaussian distribution. The thresholds corresponding to 99.7% confidence level are
calculated for both maxima and minima.

Table 1 illustrates the effectiveness of the limits found using EVS versus those calculated using
the normality assumption of the data. For a sample size of 10,000 points and a 99.7% confidence
interval, one should expect 15 outliers on each side of the confidence interval for undamaged data.
All numbers displayed in the second row are associated with the normality assumption. Under the
undamaged conditions, the confidence limits derived from EVS are much closer to the actual
99.7% limits (30 total outliers) than those derived using the normality assumption. It is clear that,
if confidence limits based upon the normality assumption are used, there are many false positives,
which negates any usefulness that the analysis sought. Quantitatively, there are approximately
three times as many outliers as should be present with a 99.7% confidence interval, as seen in
Table 1 for the baseline condition.

In damage cases, there are increasing numbers of outliers, which clearly indicates the presence
of structural anomaly. The method also shows somewhat quantitative information regarding the
severity of damage. With the increasing levels of damage, there is a corresponding increase in the
Fig. 4. Curve fit for Frechet maxima distribution: solid line, empirical CDF; o, points used; dotted line, fitted CDF.
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Table 1

Total number of outliers using EVS and Gaussian confidence limits

Outliers Undamaged Damaged

1 2 3 4 5 6 7 I II

EVS 28 26 25 23 28 37 32 573 824

Gaussian 129 100 107 100 107 161 155 898 1173
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number of outliers. In summary, the simulation results show that the proposed damage detection
algorithm coupled with EVS is able to detect damage in a structure. The method will be more
effective, if it is combined with active-sensing impedance methods.
5. Proof-of-concept applications

The test structure, shown in Figs. 5 and 6, is a simulated three-story moment-resisting frame
structure, constructed of unistrut columns and aluminum floor plates. Floors are 1.3 cm thick
aluminum plates with two-bolt connections to brackets on the unistrut columns. Support brackets
for the columns are bolted to this 3.8 cm thick aluminum base plate. All bolted connections are
tightened to a preload of 25Nm in the undamaged state.

Four PSI-5A PZT patches (2.5 cm
 2.5 cm
 0.025 cm) are bonded to the brackets that affix the
second floor to the unistrut columns for acquiring electrical impedances, as shown in Fig. 7. This
size makes the PZT actuators/sensors small enough not to be intrusive. The impedance
measurements are made through an impedance sensing circuit in the frequency range of 5–20 kHz,
as shown in Fig. 8. In this circuit, Vout is proportional to the output current of the PZT. Electrical
impedance of the PZT patch is related to the measured input and output voltage of the PZT
through the equation

Zp ¼
Vp

Ip

¼
V in � Vout

Vout=R
) Zp ¼ R

V in

Vout
� 1: (8)

A commercial data acquisition system controlled from a laptop PC is used to digitize the
voltage analog signals. The time histories are sampled at a rate of 51.2 kHz, producing 1024
frequency data points. A total of 30 averages per run is used for impedance estimates in the
frequency domain. An amplified random signal (1V) is used as the voltage input for the testing.

After measuring the several baseline impedance signatures, damage is introduced by loosening a
bolt over selected locations. Two damage cases are imposed on this structure in sequence: Damage
I: loosening a bolt at Joint 1; Damage II: loosening a bolt at Joint 3.

A total of 13 impedance measurements were taken over a 3-week period (seven baseline
measurements, one measurement under Damage I, and five measurements under Damage II
condition). The measurements were taken at different time intervals on different days. It is
expected that the impedance signatures show relatively large variations because of the presence of
bolted joints in the structure and slight changes in room temperature during the test. When
designing and planning a long-term health monitoring system, these ambient effects should be
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Fig. 5. Assembled moment-resisting frame test structure.
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taken into account. In the impedance-based technique, analyzing impedance signatures before
and after damage would produce noticeable changes in most cases. However, a variation in the
impedance measurements caused by the induced damage must be larger than that of these
boundary or ambient condition changes.

The impedance measurements (real part) of PZT at Joint 1 are shown in the following figures.
Fig. 9 shows all seven undamaged impedance curves in the frequency range of 5–20 kHz. The
responses at 8–12 kHz are also shown for visual comparison. It can be seen that the essential
pattern of the impedance signatures remains the same over the 3 week test period when damage
was not induced. There are small random variations along the curves over the test period.
However, the variations are relatively small and the measurements are repeatable. No noticeable
degradation in the impedance signature is observed. After the damage is induced (Damage I), a
significant change occurs in the signature pattern of the impedance curve over the entire frequency
range, as shown in Fig. 10. This is because the damage causes changes in stiffness or damping
resulting in changes in mechanical impedance of the joint. All measurement readings taken after
Damage II also follow a similar pattern as that of Damage I and are shown in Fig. 11. Because the
Joint 1 is distant from Joint 3, where Damage II is introduced, only a small change, if any, has
been observed.
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Fig. 6. A schematic of the test structure: (a) side view; (b) top view.

Fig. 7. Close-up of joint with bonded PZT patch (light circle) and loosened bolt in damage case (dark circle).

G. Park et al. / Journal of Sound and Vibration 286 (2005) 229–250240
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Fig. 8. Diagram of PZT circuit indicating locations of measured voltages Vin and Vout.
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Both Damage I and II are well out of the sensing range of PZT bonded on Joint 2. Hence,
measurements taken from this PZT do not show any significant difference from one another, as
shown in Fig. 12. The remaining two PZTs show the same pattern. A complete change occurs in
the signature pattern of the curve over the entire frequency range when the damage is introduced
close to the sensor location. If the damage is distant, there are only minor variations of the
existing signature pattern.

By looking for variations in the impedance measurements, structural damage can be detected
and located. However, the visual analysis of the impedance measurement graph is not suitable for
on-line implementation of the impedance-based health monitoring technique. Traditionally, to
simplify the interpretation of the impedance variations, a scalar damage metric is used to analyze
the information from each PZT. As described in the previous section, there are many possible
damage metrics that could be used, including RMSD, cross correlation, and standard deviation.
The damage metric based on RMSD is shown in Fig. 13. The damage metric provides a summary
of the information obtained from the impedance response curves.

As can be seen in Fig. 13, there is an increase in the damage metric if damage is located close to
the PZT. Normal variations are relatively small. It should be noted that, because of relatively low-
frequency range being used in this study (5–20 kHz) as compared to traditional impedance
approaches (420 kHz), it is expected that damage initiated at one joint can be picked up by
sensors at the other joints. In addition, because of the relatively small dimension of the structure,
it is visually observed that the structure undergoes somewhat global changes with the induced
damage, i.e., twisting and/or bending of the aluminum floor plate and joints, making damage
localization quite difficult.

The other damage metrics using cross correlation or standard deviation follow the similar
pattern as those shown in Fig. 13. However, none of these methods establishes threshold values or
statistical confidence on the structure condition. The decision-making is somewhat arbitrary and
there is currently no rigorous statistical method implemented into the impedance method.

In order to apply the proposed outlier analysis, the first five baseline measurements are used to
obtain AR coefficients and exogenous coefficients of the modified ARX model. Once the
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Fig. 9. Seven baseline impedance measurement at Joint 1 before damage was introduced: (a) 5–20 kHz; (b) 8–12 kHz.
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coefficients are identified, the residual errors are extracted as a damage-sensitive feature by
substracting the measured impedance and predicted output of the ARX model. Once again, EVS
is employed to establish the confidence limit of 99.5%, and it is determined that the Frechet
distribution is the most appropriate extreme value distribution for the use in the analysis. If the
normality assumption is used, there would be many false positives with the inflated number of
outliers. The selection of the decision limit depends on the specific structure and type of damage to
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Fig. 10. A significant change has been observed with the induced damage (Joint 1): (a) 5–20 kHz; (b) 8–12 kHz: solid

line, undamaged; dotted line, damaged.
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be monitored. The 99.5% is chosen in this study because it provides acceptable risk. For a sample
size of 1020 points and a 99.5% confidence interval, 5 or 6 outliers beyond the confidence interval
for an undamaged case are expected.

Figs. 14 and 15 show the residual errors as well as the associated 99.5% confidence interval, for
Joint 1. Fig. 14 depicts the baseline undamaged case and Fig. 15 shows Damage case I, in which
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Fig. 11. Impedance measurements at Joint 1 under Damage I and Damage II condition. (Joint 1): (a) 5–20 kHz; (b)

8–12 kHz.
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Joint 1 has been damaged. There is a clear visual distinction between the undamaged and
damaged conditions.

The number of outliers for each joint and for each damage case is shown in Fig. 16. It can be
seen that results from the undamaged condition, tests 1–7, are excellent, showing no false positive
indication of damage at all joints. Two damage conditions are then correctly identified. At
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Fig. 12. Impedance measurements at Joint 2 throughout the test, before and after Damage I and II.

G. Park et al. / Journal of Sound and Vibration 286 (2005) 229–250 245
Damage I, there is a large increase in the number of outliers (38) at Joint 1, which is clearly
indicative of damage at the location. PZT 3 does not show any changes, compared to the baselines
and compared to PZTs 2 and 4, because it is located farthest away (diagonally apart) from the
damaged joint. When Damage II was introduced, there was a large increase in the number of
outliers (39) at the newly damaged joint, and a small increase in the number of outliers at Joints 2
and 4. This result shows that the proposed algorithm coupled with impedance methods can clearly
detect and locate a state of structural damage.

The proposed method provides a distinct advantage to traditional impedance-based health
monitoring approaches. The inclusion of a rigorous statistical framework enables a more
quantitative assessment of the damaged and undamaged conditions. As stated, the main
limitation of previous impedance-based approaches was ‘‘how to establish appropriate control
limit or thresholds values for damage indication’’. The decision was typically made based on
arbitrary values, i.e., ‘‘small variations’’ for undamaged cases and ‘‘large variations’’ for damaged
cases. In this proposed approach, the undamaged condition can be quantitatively assessed by
tracking the number of outliers. The numbers within or below the control limit can be considered
as an undamaged state. In the case of damage present, the proposed algorithm shows a
statistically significant number of outliers outside the control limits that allows a diagnosis of the
damage state in a more conclusive manner.

The identified outliners can also be considered as ‘‘key indicators’’ for damage identification
and structural health monitoring. For real-world applications, the impedance measurement would
produce overwhelming amounts of data from hundreds of sensors. Data compression into a small
dimensional feature is required by this constraint. The proposed algorithm allows the
condensation of the large amount of data into a much smaller data set, allowing automated
health monitoring without human interaction.
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Fig. 13. The rmsd damage metric: (a) Joint 1; (b) Joint 2; (c) Joint 3; (d) Joint 4: undamaged, white; Damage I (Joint 1),

gray; Damage II (Joint 3), black.
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6. Discussions

A statistical pattern recognition algorithm has been incorporated into the impedance-based
structural health monitoring technique. The results collected from the numerical and experimental
tests demonstrated the capability of this technology to detect damage in a statistically quantifiable
manner. There are, however, certain research issues remaining for more effective implementation
of the proposed technique.

The robustness of the proposed algorithm against ambient condition changes, such as
significant temperature variations, should be investigated and improved. In addition to the
residual errors used in this study, different parameters, such as relative and/or absolute changes in
exogenous or auto-regressive ARX coefficients can also be used as damage sensitive features and
may provide a better performance in damage identification.
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Fig. 15. 99.5% confidence interval of baseline damaged case for Joint 1.

Fig. 14. 99.5% confidence interval of baseline undamaged case for Joint 1.
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It has been found that the frequency domain ARX coefficients are sensitive to leakage [16] in
the frequency response measurements. In this study, a prior curve fitting on the impedance data
was performed before constructing the ARX model in order to minimize this effect. In addition,
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Fig. 16. Total number of outliers using EVS confidence limits for each joint: (a) Joint 1; (b) Joint 2; (c) Joint 3; (d) Joint

4: undamaged, white; Damage I (Joint 1), gray; Damage II (Joint 3), black.
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the effects of measurement noises on the proposed algorithm should be thoroughly investigated.
The feature extraction in this method involves the process of differentiating a frequency domain
spectrum as a function of frequency using a central difference curvature expansion. This
differentiation often leads to amplifications of existing noise in data. Therefore, a study is needed
to identify and quantify the effects of leakage and noise in experimental data on the proposed
algorithm.

The inclusion of EVS improves the reliability of the method by placing it within a rigorous
statistical framework. However, the selection of proper EVS distribution for each data set and the
evaluation of associated distribution parameters are still heavily based on an initial guess and a
trial-and-error method. A new process that automates estimation of proper distributions and
associated parameters needs to be established.
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These issues are currently under investigation and the results will be published in the near
future.
7. Conclusion

A new pattern recognition approach that capitalizes the features of impedance signals has been
presented for structural damage identification problems. A modified auto-regressive model with
exogenous inputs in the frequency domain is developed, and associated prediction errors are used
as damage-sensitive features. The method of outlier analysis is then adopted to determine the
damage state of a structure. Furthermore, extreme value statistics is used to establish proper
confidence limits because of the non-Gaussian nature of the identified feature distribution tails. A
numerical example on a 5 degree-of-freedom system and experimental results on a three-story
building model have been presented to demonstrate the proposed concept. It has been found that
the proposed algorithm could assess the condition of a structure in a more quantifiable manner
over the traditional impedance approaches.
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